10707 Final Project: Report
Predicting Performance of NBA Basketball Players
Using Deep Learning

Yugandhar Pavan Devarapalli, Grant Xu, Snigdha Rajeshk Purohit

1 Introduction

1.1 Problem Statement

Our objective is to predict the performance of NBA basketball players in an upcoming game using
Deep Learning Techniques and apply it in fantasy sports.

1.2 Motivation

The general motivation is to apply Deep Learning methods to Sports Analytics. Much of sports data
can be modeled by tracking temporal dependencies. Deep learning provides some efficient models to
do it, provided enough data is available. More specifically, much of current basketball analytics
is about player movements within a game at a very granular level. However, an algorithm which
analyzes player performance from game to game using deep learning, hasn’t been explored much.

Daily fantasy sports games’ increasing popularity provide an excellent practical application to this
motivation. The goal is to select the best team satisfying the given constraints, which is expected
to perform well in a given day. Predicting individual player performance can be highly helpful in
solving this constraint satisfaction problem (which is another problem in of itself).

2 Related Work

Most of the previous literature on ML in the NBA, focuses on predicting the outcomes of NBA
games (i.e., which team wins). State-of-the-art linear and logistic regression models correctly predict
the outcome of about 68 percent of games, while more complicated models such as artificial neural
networks (ANNs) and deep belief networks (DBNs) have yielded similar success. However, there has
been significantly less research related to predicting individual player stats, particularly as applied to
fantasy basketball. [1]

Furthermore,the lesser research which has been done to predict individual player statistics is mostly
based on applying traditional machine learning techniques that do not explicitly take into account
dependencies from one game to the next. Techniques which have been attempted include Linear
Regression, Support Vector Machines, Random Forest Regression, and Generalized Linear Models.

Paper[1] presents an approach to predict the individual game outcomes using Linear Regression,
Support Vector Regression and Random Forest Regression, and also presents a comparison between
the three models. The best accuracy obtained for prediction in this paper was 70 percent.

10707 Class Project (2017).

Paper[4] makes an attempt to apply machine learning to fantasy sports in order to gain an edge over
the average player. This paper is related to the work we have done in this paper. The data was taken
from DraftKings which is a fantasy sports gambling website. Individual basketball players’ fantasy
scores were predicted using a linear regression algorithm and stochastic gradient descent as well as a
Naive Bayes classifier with discretized state space.

The linear regression model was based on box score statistics from a player in previous
games. Whereas the Naive Bayes approach was implemented using a multinomial Naive Bayes
classifier, with discretized parameters to prevent an infinite event space.

3 Proposed Approach

We propose the use of Recurrent Neural Networks(RNNS), specifically LSTMs, to solve this problem.
The idea behind using RNNs is that they provide us an architecture to analyze sequential data
and explicitly model temporal dependencies from one time step to the next. It helps us propagate
important performance metrics from a player’s previous games to help us predict the player’s
performance in the upcoming game.

LSTMs are useful in tracking long term dependencies.LSTMs help preserve the error that
can be backpropagated through time and layers. By maintaining a more constant error, they allow
recurrent nets to continue to learn over many time steps, thereby opening a channel to link causes and
effects remotely [2].

4 Data Pre-Processing

Our dataset consists of all player game statistics from games played in the 2016-17 NBA season
(25360 rows). First, the data was grouped by player and sorted by date. Then, we created our RNN
with LSTM input dataset as follows :

1. Within each player, we used a sliding window approach.

2. Each row consists of [z, z2, 23, T4, T5, T6,T7,28,L9,L10,X11], 1 1S the oldest game and x1; is
the most recent game.

3. x1...x10 are our inputs and x1; is our target value.

4. All z; are 18 dimensions. The 18 features include minutes played, field goals made, field goals
attempted, two pointers made, two pointers attempted, three pointers made, three pointers attempted,
free throws made, free throws attempted, offensive rebounds, defensive rebounds, total rebounds,
assists, steals, blocks, turnovers, personal fouls, and points.

5. All columns were standardized by subtracting mean and dividing by standard deviation.

6. Resulting dataset is of 20824 X 11 X 18. Here 20824 are number of samples, 11 is the number of
games, 18 is the number of features.

7. The dataset was split into train and test by random sampling with test ratio of 0.25 when used for
LSTM.

5 Implementation

5.1 RNN with LSTM

The PyTorch package was used to implement the RNN with LSTM.
The 10 sequence RNN with LSTM model implemented for this project is as shown in Figure [I]

Model Diagram
Fully connected 1:hx e
output layer T
statistics
hl h2 h3
Hidden layer T I T
‘ v and so on
ho 18 X128 l_ﬂcb- rgb[‘ 18 X128 sill 10 18X 128
— —-l—li) ' { ->—- -
9)
T x1 x2 x3 x10
1X18 1X18 1X18 1X18
1stgame 2" game 3 game 10th game
statistics statistics statistics statistics
Input layer

Figure 1: The 10 sequence RNN with LSTM model

We used the RNN with LSTM with the following :
1. The input is of batch size 128 with sequence 10 and 18 dimensions.

2. The output from hidden layer of the final step is then linked to fully connected output layer of
dimensions same as the input i.e, 18.

3. We use a Mean Squared Error loss and output is linearly activated.

Once we get the 18 dimensional output layer we then rescale it to original magnitudes by multiplying
standard deviation and adding respective means to each column/dimension.This vector is then used
to calculate calculate an overall performance score using the formula is given by the fantasy sports
website DraftKings [3].

Mean square error on the overall performance score was used for comparison.

5.2 Neural Network on top of LSTM output

The output of the LSTM (a 1 X 18 vector of predicted statistics for the 11th game) was then fed
as part of an input to a neural network. This was done in order to incorporate some additional
known variables for the 11th game that we do not have to predict. These include whether
the player is playing at home or away, whether the player is starting, the opponent’s overall
defensive rating, the opponent’s position-specific defensive rating, the Vegas projection of margin of
victory, the Vegas projection of total points scored in the game, and the Draftkings salary of the player.

Thus, 25 attributes in total were used as an input to a neural network to predict the final Draftkings
score in hope of achieving better accuracy than just using the 18 attributes from the LSTM. The neural
network regressor was implemented using the sklearn package in Python. Various hyperparameters
were tested, including the number of hidden layers (1 or 2), the size of the hidden layers (ranging from
2 all the way up to 128), the L2 regularization parameter, the learning rate, momentum, batch size,
and the solver method. Performance improvements were minimal regardless of the hyperparameters
used.

6 Results and Analysis

6.1 RNN

The best parameters are:

learning rate = 0.01; momentum = 0.9; weight decay = 0.001;

The train MSE output error decreases from 12.55 to 10.49 in 200 epochs

The test MSE output error converges to lowest value 10.76 in 66 epochs and then oscillates

The test score MSE error decreases from 93.38 to 88.6 (lowest at 28 epochs) and then increases
slightly.

6.2 RNN with LSTM(10 sequence)

The best parameters are:

learning rate = 0.01; momentum = 0.9; weight decay = 0.001;

The train MSE output error decreases from 14.69 to 10.55 in 200 epochs

The test MSE output error converges from 12.19 to 10.337 in 72 epochs and then oscillates

The test MSE score error decreases from 91.60 to 82.8 (lowest at 27 epochs) and then increases
slightly. The Figure[3] shows the plot of LSTM mean squared error for score.

LSTM MSE of Score

130 — TEIN
— fESE
. 120
E
L
B 110
m
3
o
un
5 100
1 £}
=
%0 \L
Pt PPt
o 20 40 B0 BO 100
Epoch

Figure 2: Error plot for the LSTM

6.3 Neural Network on Top of LSTM

The best performing networks on the training set were between 81 and 82 as observed from Figure
which is an insignificant improvement compared to the MSE of 82 achieved from the LSTM
10 sequence model. This suggests that the newly added attributes don’t actually add much more
predictive power, which was highly surprising, considering for example, the common perception
that playing at home is better for the player. Either the effects of these newly added attributes are
totally insignificant, or perhaps they predict the performance of an overall team much better than the
performance of any individual player.

Neural Network (on top of LSTM) Training

Mean Squared Error

1234567 8 9 1011121314151617 18192021 222324

Epoch

e T TR Test

Figure 3: Error plot of Neural Network on top of LSTM

Alternative measures of error and model performance

Mean squared error is the metric that makes the most sense when training learning algorithms with
no context. However, in the context of our problem, a more practical measure of error is needed to
understand just how well the model is doing. We decided to define any prediction that was within 5
points of the actual score as “correct”, and any prediction that was further than 5 points away from
the ground truth to be “false”. The 5 points is an arbitrary threshold, but a daily fantasy sports player
would be decently comfortable adding a player to their roster if they can correctly predict that player’s
performance within such a range.

Classification accuracy on test data (LSTM only): 54.37%
Classification accuracy on test data (LSTM followed by NN): 75.49%

This is especially surprising, given that there was no discernible difference in MSE. With this measure
of error, it seems that adding the neural network did improve performance. This could be possible if
the neural network gives results that are on average moderately good, but the LSTM gives results
that are both very good and very bad. In this case, MSE can be very similar, but the classification
accuracy metric can have a wide disparity as seen above. Thus the NN likely has a smaller variance
in its predictions, which can be helpful for a user or player looking to minimize their risk.

Another way to measure error is simply error with respect to the ground truth, which was used to
compare our results with the results from a Stanford paper[4] in the following section.

7 Comparison with Previous work

There are two papers in the current literature on NBA Fantasy league Prediction which use traditional
machine learning techniques as described in Related Work section. Our work is much similar to
Stanford Paper [4] than the Paper [1] as later focuses on outcomes of games than explicit player
performance in its metric evaluation.

To compare with the Paper[4] we made explicit changes to the performance metric evaluation.
Instead of the MSE of the score, we calculated the error of predicted score to the ground truth as
done in Paper [4]. The train and test error were plotted against the average player points per game
ranging from 5 to 40. Figurd4] shows the Player Points Vs Error Plot for our Model and Figurd?)
shows the Player Points Vs Error Plot for Paper[4] (Figure3).

The performance of our model far exceeded that of the previous model. For example, the
test error for average player points of 5 of best model in Paper[4] was around 0.55 and our best model
gives a performance of 0.30 which is quite significant. Similarly, the test error for average player
points of 40 in Paper[4] was around 0.2 and our best model gives a performance of 0.15.

Player Points Vs Errar

m— Train Error
e Test Error

0.30

0.28

0.26

0.24

Errar

022

020

0.18

016

5 10 15 20 25 30 35 40
Minimum Player Paints per Game to be included in Error Estimate

Figure 4: Player Points Vs Error Plot of our Best Model

Naive Bayes and Linear Regression Test Errors

Error on Test Set

10 15 m 3 30 35 A

Minirum Paints Per Game te Be Included In Error Estimate

Figure 5: Player Points Vs Error Plot of Paper([4]

8 Future work

A Hidden Markov Model could be run on top of the LSTM model to try to increase accuracy of
the predictions. In addition, different sequence lengths for the LSTM could be attempted (maybe
longer sequence lengths). Another idea would be to add more training data from previous seasons or
to exclude players from the dataset that tend to skew the model. These could be players that play
minimally (less than a certain number of minutes), or who play incredibly erratically from game to
game. Lastly, the model should be run on present day data (in addition to back testing), as that is the
purest form of testing.

Beyond pure accuracy, it is also very important for the fantasy player to minimize their risk, or at
least know what their risk is. To this end, it would be helpful if a model could be created that outputs
some kind of variance measurement or confidence interval for the prediction.

Even further beyond this, the predictions and variance measurements can be used to solve the
constraint satisfaction problem to create an optimal fantasy team. Much like assembling a stock
portfolio, such an algorithm would have to optimize the right balance of bias and variance to help the
user make as much money as possible.

9 References

[1] Chan, Hu, Shivakumar (2015) Learning to Turn Fantasy Basketball Into Real Money.
https://shreyasskandan.github.io/files/report-ChanHuShivakumar.pdf

[2] A Beginner’s Guide to Recurrent Networks and LSTMs. https://deeplearning4j.org/
lstm.html

[3lhttps://www.draftkings.com/help/rules/nba

[4] Eric Hermann, Adebia Ntoso (2015) Machine Learning Applications in Fantasy Basketball.
http://cs229.stanford.edu/proj2015/104_report.pdf

https://shreyasskandan.github.io/files/report-ChanHuShivakumar.pdf
https://deeplearning4j.org/lstm.html
https://deeplearning4j.org/lstm.html
https://www.draftkings.com/help/rules/nba
http://cs229.stanford.edu/proj2015/104_report.pdf

	Introduction
	Problem Statement
	Motivation

	Related Work
	Proposed Approach
	Data Pre-Processing
	Implementation
	RNN with LSTM
	Neural Network on top of LSTM output

	Results and Analysis
	RNN
	RNN with LSTM(10 sequence)
	Neural Network on Top of LSTM

	Comparison with Previous work
	Future work
	References

